Прогнозирование на основе кривых роста Гомперца и Перля-Рида
Параметры уравнения находятся следующим образом:
. Автокорреляция: причины возникновения и способы выявления
Автокорреляция - это наличие сильной корреляционной зависимости между последовательными уровнями временного ряда. Если при выявлении и моделировании тенденции такая зависимость имеет положительный характер, т.к. при её наличии тренд проявляется более четко, то при моделировании связных рядов динамики (рядов динамики, характеризующих взаимосвязь 2 или более показателей, экономически зависимых во времени) наличие автокорреляции приводит к тому, что прямые методы построения регрессионных моделей не могут быть использованы. Причинами автокорреляции м.б.: не учтен в модели существенный фактор, при этом его влияние отражается на величине отклонений, которые в этом случае показывают закономерность в изменении, связанную с изменением неучтенного фактора. В модели не учитывается несколько факторов, влияние каждого из которых в отдельности не существенно, но при совпадении изменений этих факторов по направлению и по фазе в отклонениях может возникнуть автокорреляция. Автокорреляция в отклонениях может появиться в случае, когда неправильно выбрана форма связи между y и x. Неверно выбран порядок авторегрессионой модели. Вследствие специфичности внутренней структуры случайного компонента.
Схема анализа автокорреляции в уровнях ряда динамики имеет следующий вид:
) оценка наличия автокорреляции на основе коэффициента автокорреляции или критерия Дарбина-Уотсона; 2) Выявление причин автокорреляции; 3) построение моделей авторегрессионных преобразований, исключающих автокорреляцию;
Оценка автокорреляции может быть осуществлена на основе расчета и анализа коэффициента автокорреляции, который определяется на основе формулы коэффициента корреляции для парной (линейной) связи между уровнями исходного ряда и того же ряда, но сдвинутого на τ шагов во времени:
где yt - эмпирические значения уровней ряда;
Возникает проблема заполнения последнего уровня ряда y t+1. В данном случае возможны два варианта:
1. Если значение последнего уровня мало отличается от первого, то чтобы ряд не укорачивался, его можно условно дополнить . Тогда
2. Значение уровня ряда остается незаполненным и ставится прочерк.
Проверка на наличие автокорреляции заключается в сравнении расчетных значений с его критическим или табличным значениями.
Если ra > ra кр при заданном уровне значимости α и n, то в исходном временном ряду существует автокорреляция, в противном случае она отсутствует.
Для проверки автокорреляции в уровнях ряда также используется и критерий Дарбина-Уотсона. Гипотеза о наличии автокорреляции проверяется с помощью случайной величины:
Если автокорреляции в ряду нет, то значения критерия d колеблются вокруг 2.
Эмпирическое значение d сравнивается с табличным значением. При отрицательной автокорреляция d изменяется от 2 до 4, и для проверки её наличия рассчитывается d‘ = 4 - dрасчет.
Другие статьи
Теория спроса и предложения
Актуальность исследования: Изучая теорию спроса и предложения, мы
считали, что рассматриваемый рынок, в рамках которого взаимодействуют спрос и
предложение, является неизменным и однородным. В реальной действительности
национальный рынок состоит из множества отраслей. Каждая отрасль ( ...