Факторный и компонентный анализ как методы снижения размерности
Компонентный и факторный анализы проводятся с несколькими целями. Как методы снижения размерности они позволяют выявить закономерности, которые непосредственно не наблюдаются. Эта задача решается по матрице нагрузок, как и классификация признаков в пространстве главных компонент (или общих факторов). А индивидуальные значения используются для классификации объектов (не по исходным признакам, а по главным компонентам или общим факторам) и для построения уравнения регрессии на эти обобщенные показатели. Интерпретируются главные компоненты и общие факторы, которым соответствуют дисперсии больше 1, и которые имеют хотя бы одну весомую нагрузку. Выбор критической величины, при превышении которой элемент матрицы нагрузок признается весовым и оказывает влияние на интерпретацию главной компоненты или общего фактора, определяется по смыслу решаемой задачи и может варьировать в пределах от 0,5 до 0,9 в зависимости от получаемых промежуточных результатов. Формальные результаты должны хорошо интерпретироваться.
Факторный анализ - более мощный и сложный аппарат, чем метод главных компонент, поэтому он применяется в том случае, если результаты компонентного анализа не вполне устраивают. Но поскольку эти два метода решают одинаковые задачи, необходимо сравнить результаты компонентного и факторного анализов, т.е. матрицы нагрузок, а также уравнения регрессии на главные компоненты и общие факторы, прокомментировать сходство и различия результатов.
Компонентный анализ предназначен для преобразования системы k исходных признаков, в систему k новых показателей (главных компонент). Главные компоненты не коррелированны между собой и упорядочены по величине их дисперсий, причем, первая главная компонента, имеет наибольшую дисперсию, а последняя, k-я, наименьшую. При этом выявляются неявные, непосредственно не измеряемые, но объективно существующие закономерности, обусловленные действием как внутренних, так и внешних причин.
Компонентный анализ является одним из основных методов факторного анализа. В задачах снижения размерности и классификации обычно используются m первых компонент (m< k).
Модель компонентного анализа имеет вид:
(1),
Где aiν - “вес”, факторная нагрузка, ν-ой главной компоненты на j-ой переменной; fiν - значение ν-й главной компоненты для i-го наблюдения (объекта), где ν=1,2, .,k.
При наличии результативного показателя Y может быть построено уравнение регрессии на главных компонентах.
Обычно для анализа используют m первых главных компонент, суммарный вклад которых превышает 60-70%.
Уравнение регрессии на главных компонентах строится по алгоритму пошагового регрессионного анализа, где в качестве аргументов используются главные компоненты, а не исходные показатели. К достоинству последней модели следует отнести тот факт, что главные компоненты не коррелированы. При построении уравнений регрессии следует учитывать все главные компоненты.
Другие статьи
Формирование производственной программы предприятия ООО Камилла
Устойчивое финансовое состояние промышленного предприятия
действующего в рыночной экономике может быть обеспечено при условии постоянного
совершенствования и развития производства с целью выпуска продукции,
соответствующей динамично меняющемуся спросу потребителей. Обеспечить это
соо ...